Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(42): eadj0904, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851810

RESUMO

A continuing challenge in atomic resolution microscopy is to identify significant structural motifs and their assembly rules in synthesized materials with limited observations. Here, we propose and validate a simple and effective hybrid generative model capable of predicting unseen domain boundaries in a potassium sodium niobate thin film from only a small number of observations, without expensive first-principles calculations or atomistic simulations of domain growth. Our results demonstrate that complicated domain boundary structures spanning 1 to 100 nanometers can arise from simple interpretable local rules played out probabilistically. We also found previously unobserved, significant, tileable boundary motifs that may affect the piezoelectric response of the material system, and evidence that our system creates domain boundaries with the highest configurational entropy. More broadly, our work shows that simple yet interpretable machine learning models could pave the way to describe and understand the nature and origin of disorder in complex materials, therefore improving functional materials design.

3.
Sci Adv ; 8(15): eabk1005, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417228

RESUMO

Characterizing materials to atomic resolution and first-principles structure-property prediction are two pillars for accelerating functional materials discovery. However, we are still lacking a rapid, noise-robust framework to extract multilevel atomic structural motifs from complex materials to complement, inform, and guide our first-principles models. Here, we present a machine learning framework that rapidly extracts a hierarchy of complex structural motifs from atomically resolved images. We demonstrate how such motif hierarchies can rapidly reconstruct specimens with various defects. Abstracting complex specimens with simplified motifs enabled us to discover a previously unidentified structure in a Mo─V─Te─Nb polyoxometalate (POM) and quantify the relative disorder in a twisted bilayer MoS2. In addition, these motif hierarchies provide statistically grounded clues about the favored and frustrated pathways during self-assembly. The motifs and their hierarchies in our framework coarse-grain disorder in a manner that allows us to understand a much broader range of multiscale samples with functional imperfections and nontrivial topological phases.

4.
Nano Lett ; 22(1): 203-210, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928607

RESUMO

The burgeoning field of twistronics, which concerns how changing the relative twist angles between two materials creates new optoelectronic properties, offers a novel platform for studying twist-angle dependent excitonic physics. Herein, by surveying a range of hexagonal phase transition metal dichalcogenides (TMD) twisted homobilayers, we find that 21.8 ± 1.0°-twisted (7a×7a) and 27.8 ± 1.0°-twisted (13a×13a) bilayers account for nearly 20% of the total population of twisted bilayers in solution-phase restacked bilayers and can be found also in chemical vapor deposition (CVD) samples. Examining the optical properties associated with these twisted angles, we found that 21.8 ± 1.0° twisted MoS2 bilayers exhibit an intense moiré exciton peak in the photoluminescence (PL) spectra, originating from the refolded Brillouin zones. Our work suggests that commensurately twisted TMD homobilayers with short commensurate wavelengths can have interesting optoelectronic properties that are different from the small twist angle counterparts.

5.
Nano Lett ; 21(7): 3262-3270, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749268

RESUMO

Twisting the angle between van der Waals stacked 2D layers has recently sparked great interest as a new strategy to tune the physical properties of the materials. The twist angle and associated strain profiles govern the electrical and optical properties of the twisted 2D materials, but their detailed atomic structures remain elusive. Herein, using combined atomic-resolution electron microscopy and density functional theory (DFT) calculations, we identified five unique types of moiré features in commensurately twisted 7a×7a transition metal dichalcogenide (TMD) bilayers. These stacking variants are distinguishable only when the moiré wavelength is short. Periodic lattice strain is observed in various commensurately twisted TMD bilayers. Assisted by Zernike polynomial as a hierarchical active-learning framework, a hexagon-shaped strain soliton network has been atomically unveiled in nearly commensurate twisted TMD bilayers. Unlike stacking-polytype-dependent properties in untwisted structures, the stacking variants have the same electronic structures that suggest twisted bilayer systems are invariant against interlayer gliding.

6.
Nature ; 581(7807): 171-177, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405019

RESUMO

Two-dimensional (2D) materials1-5 offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth intercalation has usually been limited to alkali metals8-10. Here we show that the self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. By performing growth under high metal chemical potential14,15 we can access a range of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.

7.
ACS Nano ; 13(9): 10768-10775, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31491079

RESUMO

Controlled substitutional doping of two-dimensional transition-metal dichalcogenides (TMDs) is of fundamental importance for their applications in electronics and optoelectronics. However, achieving p-type conductivity in MoS2 and WS2 is challenging because of their natural tendency to form n-type vacancy defects. Here, we report versatile growth of p-type monolayer WS2 by liquid-phase mixing of a host tungsten source and niobium dopant. We show that crystallites of WS2 with different concentrations of substitutionally doped Nb up to 1014 cm-2 can be grown by reacting solution-deposited precursor film with sulfur vapor at 850 °C, reflecting the good miscibility of the precursors in the liquid phase. Atomic-resolution characterization with aberration-corrected scanning transmission electron microscopy reveals that the Nb concentration along the outer edge region of the flakes increases consistently with the molar concentration of Nb in the precursor solution. We further demonstrate that ambipolar field-effect transistors can be fabricated based on Nb-doped monolayer WS2.

8.
Adv Mater ; 31(40): e1903779, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31423650

RESUMO

Among van der Waals layered ferromagnets, monolayer vanadium diselenide (VSe2 ) stands out due to its robust ferromagnetism. However, the exfoliation of monolayer VSe2 is challenging, not least because the monolayer flake is extremely unstable in air. Using an electrochemical exfoliation approach with organic cations as the intercalants, monolayer 1T-VSe2 flakes are successfully obtained from the bulk crystal at high yield. Thiol molecules are further introduced onto the VSe2 surface to passivate the exfoliated flakes, which improves the air stability of the flakes for subsequent characterizations. Room-temperature ferromagnetism is confirmed on the exfoliated 2D VSe2 flakes using a superconducting quantum interference device (SQUID), X-ray magnetic circular dichroism (XMCD), and magnetic force microscopy (MFM), where the monolayer flake displays the strongest ferromagnetic properties. Se vacancies, which can be ubiquitous in such materials, also contribute to the ferromagnetism of VSe2 , although density functional theory (DFT) calculations show that such effect can be minimized by physisorbed oxygen molecules or covalently bound thiol molecules.

9.
Nano Lett ; 19(8): 5595-5603, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241969

RESUMO

Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photons with energy even lying 219 meV below the bandgap of WS2 at room temperature. With the increase of excitation wavelength from 620 to 680 nm, photoresponsivity varies from 551 to 59 mA/W. This anomalous phenomenon is ascribed to energy upconversion, which is a combination effect of one-photon excitation and multiphonon absorption through an intermediate state created most likely by sulfur divacancy with oxygen adsorption. These findings will arouse research interests on other upconversion optoelectronic devices, photovoltaic devices, for example, of monolayer transition metal dichalcogenides (TMDCs).

10.
Adv Mater ; 31(23): e1900862, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997722

RESUMO

Alloying 2D transition metal dichalcogenides has opened up new opportunities for bandgap engineering and phase control. Developing a simple and scalable synthetic route is therefore essential to explore the full potential of these alloys with tunable optical and electrical properties. Here, the direct synthesis of monolayer WTe2 x S2(1- x ) alloys via one-step chemical vapor deposition (CVD) is demonstrated. The WTe2 x S2(1- x ) alloys exhibit two distinct phases (1H semiconducting and 1T ' metallic) under different chemical compositions, which can be controlled by the ratio of chalcogen precursors as well as the H2 flow rate. Atomic-resolution scanning transmission electron microscopy-annular dark field (STEM-ADF) imaging reveals the atomic structure of as-formed 1H and 1T ' alloys. Unlike the commonly observed displacement of metal atoms in the 1T ' phase, local displacement of Te atoms from original 1H lattice sites is discovered by combined STEM-ADF imaging and ab initio molecular dynamics calculations. The structure distortion provides new insights into the structure formation of alloys. This generic synthetic approach is also demonstrated for other telluride-based ternary monolayers such as WTe2 x Se2(1- x ) single crystals.

11.
Adv Mater ; 31(15): e1808343, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30785651

RESUMO

Molybdenum carbide (Mo2 C), a class of unterminated MXene, is endowed with rich polymorph chemistry, but the growth conditions of the various polymorphs are not understood. Other than the most commonly observed T-phase Mo2 C, little is known about other phases. Here, Mo2 C crystals are successfully grown consisting of mixed polymorphs and polytypes via a diffusion-mediated mechanism, using liquid copper as the diffusion barrier between the elemental precursors of Mo and C. By controlling the thickness of the copper diffusion barrier layer, the crystal growth can be controlled between a highly uniform AA-stacked T-phase Mo2 C and a "wedding cake" like Mo2 C crystal with spatially delineated zone in which the Bernal-stacked Mo2 C predominate. The atomic structures, as well as the transformations between distinct stackings, are simulated and analyzed using density functional theory (DFT)-based calculations. Bernal-stacked Mo2 C has a d band closer to the Fermi energy, leading to a promising performance in catalysis as verified in hydrogen evolution reaction (HER).

12.
Adv Mater ; 31(16): e1900237, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30811670

RESUMO

Understanding the mechanisms and kinetics of defect annihilations, particularly at the atomic scale, is important for the preparation of high-quality crystals for realizing the full potential of 2D transition metal dichalcogenides (TMDCs) in electronics and quantum photonics. Herein, by performing in situ annealing experiments in an atomic resolution scanning transmission electron microscope, it is found that stacking faults and rotational disorders in multilayered 2D crystals can be healed by grain boundary (GB) sliding, which works like a "wiper blade" to correct all metastable phases into thermodynamically stable phases along its trace. The driving force for GB sliding is the gain in interlayer binding energy as the more stable phase grows at the expanse of the metastable ones. Density functional theory calculations show that the correction of 2D stacking faults is triggered by the ejection of Mo atoms in mirror twin boundaries, followed by the collective migrations of 1D GB. The study highlights the role of the often-neglected interlayer interactions for defect repair in 2D materials and shows that exploiting these interactions has significant potential for obtaining large-scale defect-free 2D films.

13.
Nanoscale Adv ; 1(3): 953-960, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133195

RESUMO

Transition metal oxide powders have been widely used as the growth precursors for monolayer transition metal dichalcogenides (TMDCs) in chemical vapor deposition (CVD). It has been proposed that metal oxide precursors in the gas phase undergo a two-step reaction during CVD growth, where transition metal sub-oxides are likely formed first and then the sulfurization of these sub-oxides leads to the formation of TMDCs. However, the effects of stoichiometry of transition metal oxide precursors on the growth of TMDC monolayers have not been studied yet. In this contribution, we report the critical role of the WO3 precursor pre-annealing process on the growth of WS2 monolayers. Besides, several WO3 precursors with different types of oxygen vacancies have also been prepared and investigated by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and density functional theory calculation. Among all the non-stoichiometric WO3 precursors, thermally annealed WO3 powder exhibits the highest oxygen vacancy concentration and produces WS2 monolayers with significantly improved quality in terms of lateral size, density, and crystallinity. Our comprehensive study suggests that the chemical composition of transition metal oxide precursors would be fundamentally critical for the growth of large-area and high-quality WS2 monolayers, which further pave the way for revealing their intrinsic properties and unique applications.

14.
Nano Lett ; 18(10): 6340-6346, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192558

RESUMO

Ferroelectric thin film has attracted great interest for nonvolatile memory applications and can be used in either ferroelectric Schottky diodes or ferroelectric tunneling junctions due to its promise of fast switching speed, high on-to-off ratio, and nondestructive readout. Two-dimensional α-phase indium selenide (In2Se3), which has a modest band gap and robust ferroelectric properties stabilized by dipole locking, is an excellent candidate for multidirectional piezoelectric and switchable photodiode applications. However, the large-scale synthesis of this material is still elusive, and its performance as a ferroresistive memory junction is rarely reported. Here, we report the low-temperature molecular-beam epitaxy (MBE) of large-area monolayer α-In2Se3 on graphene and demonstrate the use of α-In2Se3 on graphene in ferroelectric Schottky diode junctions by employing high-work-function gold as the top electrode. The polarization-modulated Schottky barrier formed at the interface exhibits a giant electroresistance ratio of 3.9 × 106 with a readout current density of >12 A/cm2, which is more than 200% higher than the state-of-the-art technology. Our MBE growth method allows a high-quality ultrathin film of In2Se3 to be heteroepitaxially grown on graphene, thereby simplifying the fabrication of high-performance 2D ferroelectric junctions for ferroresistive memory applications.

15.
Adv Mater ; 30(23): e1707281, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29707846

RESUMO

Fabrication of materials in the monolayer regime to acquire fascinating physical properties has attracted enormous interest during the past decade, and remarkable success has been achieved for layered materials adopting weak interlayer van der Waals forces. However, the fabrication of monolayer metal membranes possessing strong intralayer bonding remains elusive. Here, suspended monolayer Mo membranes are fabricated from monolayer MoSe2 films via selective electron beam (e-beam) ionization of Se atoms by scanning transmission electron microscopy (STEM). The nucleation and subsequent growth of the Mo membranes are triggered by the formation and aggregation of Se vacancies as seen by atomic resolution sequential STEM imaging. Various novel structural defects and intriguing self-healing characteristics are unveiled during the growth. In addition, the monolayer Mo membrane is highly robust under the e-beam irradiation. It is likely that other metal membranes can be fabricated in a similar manner, and these pure metal-based 2D materials add to the diversity of 2D materials and introduce profound novel physical properties.

16.
ACS Nano ; 12(2): 1940-1948, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29385335

RESUMO

Manipulation of lattice strain is emerging as a powerful means to modify the properties of low-dimensional materials. Most approaches rely on external forces to induce strain, and the role of interlayer van der Waals (vdW) coupling in generating strain profiles in homobilayer transition metal dichalcogenide (TMDC) films is rarely considered. Here, by applying atomic-resolution electron microscopy and density functional theory calculations, we observed that a mirror twin boundary (MTB) modifies the interlayer vdW coupling in bilayer TMDC films, leading to the development of local strain for a few nanometers in the vicinity of the MTB. Interestingly, when a single MTB in one layer is "paired" with another MTB in an adjacent layer, interlayer-induced strain is reduced when the MTBs approach each other. Therefore, MTBs are not just 1D discontinuities; they can exert localized 2D strain on the adjacent lattices.

17.
Nano Lett ; 18(1): 482-490, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29253330

RESUMO

The catalytic and magnetic properties of molybdenum disulfide (MoS2) are significantly enhanced by the presence of edge sites. One way to obtain a high density of edge sites in a two-dimensional (2D) film is by introducing porosity. However, the large-scale bottom-up synthesis of a porous 2D MoS2 film remains challenging and the correlation of growth conditions to the atomic structures of the edges is not well understood. Here, using molecular beam epitaxy, we prepare wafer-scale nanoporous MoS2 films under conditions of high Mo flux and study their catalytic and magnetic properties. Atomic-resolution electron microscopy imaging of the pores reveals two new types of reconstructed Mo-terminated edges, namely, a distorted 1T (DT) edge and the Mo-Klein edge. Nanoporous MoS2 films are magnetic up to 400 K, which is attributed to the presence of Mo-terminated edges with unpaired electrons, as confirmed by density functional theory calculation. The small hydrogen adsorption free energy at these Mo-terminated edges leads to excellent activity for the hydrogen evolution reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...